clash官网 clash for windows clash
“国际权威”发现转基因作物里含有害病毒基因,转基因食品再次被判死刑!
—转基因作物里果然藏有病毒基因,美国和转基因骗子亡我中华之心昭然若揭!
注译者:半解一知半解 时间:2013年1月21~23日
说明:
中国的转毒基因骗子集团在对全党、全军、全国各族人民实施弥天大谎欺骗时津津乐道、特别具有威慑力的两件大事:一是只有它们才懂得外星人天书《分子生物学》,只有它们才懂得转基因技术,他们可以担保“现代生物核心技术”培育的转基因食品“安全无害”, 甚至比天然食品更好;二是几乎从没做过转基因实验的“国际权威”,例如联合国粮农组织、世界卫生组织、孟山都前高级雇员担任部长的美国农业部、美国政府、欧洲食品安全局等转基因利益集团的亲密战友和打手们都确认转基因食品“安全无害”。
尽管这些年来,国际国内所有的独立研究和巨大毒害事实无不在警告:转基因食品危害巨大,是一种大规模致死性生物武器,完全可以造成断子绝孙、亡国灭种的可怕结果。但外星人遗传的、绝对正确的转基因骗子们压根就不屑一顾,一概斥之为“谣言”、“垃圾”、“方法不对”, 云云。更特别搞笑的是,2012年9月法国科学家两年的老鼠喂食孟山都的转基因玉米试验的巨大危害结果发表后,国内外的转基因骗子们群起攻之,似乎只有孟山都2002年做的90天的漏洞百出的老鼠试验才是地球乃至宇宙中唯一永远正确、不可挑战的尚方宝剑!这是一帮什么样的丧尽天良、荒谬绝伦的货色,不用我多罗嗦了。现在,是谁一直在丧尽天良地散布伪科学谣言、垃圾也是一目了然的。
现在,转基因骗子们的亲密战友欧洲食品安全局的监管者Podevin和Du Jardin在一次监测过敏原的时候意外发现已经市场化20多年的转基因作物里竟然暗藏了一种叫VI基因的有害病毒基因!这从技术上彻底否定了转基因食品“安全无害”的弥天大谎,证明转基因就是转毒基因,也说明国际国内所有强推转基因食品化的人士就是一帮伪科学骗子、食品恐怖分子和种族灭绝犯罪分子!它们多年来不顾国际国内的强烈反对意见、研究成果和毒害事实一意孤行,并不是不知道、不懂得转毒基因食品的巨大危害,而是故意为之,所以,对于这些故意犯罪分子,必须予以严惩,方能对被转毒基因饲料和食品毒害、毒杀的动物、人类有一个象样的交代,也才能对全国人民、中华民族和子孙后代有一个让人放心的交代!
有意思的是,这次发现毒基因的是精通《现代分子生物学》和转毒基因技术的欧洲食品安全局的转基因监管人员,而且,是转基因骗子们公认的“国际权威”,也是转毒基因骗子集团的亲密战友,它们负责在欧洲为转毒基因的批准大开方便之门,因此它们的新发现多少具有严重渎职、监守自盗的意味,而且,前年,它们竟然提名孟山都的前雇员进入管理委员会,但最终失败。中国大大小小的转毒基因骗子们,对此你们又打算作何反驳和海盗式的否定呢?!
我们决不可因为这次的技术新发现而放松对转毒基因骗子集团的正义斗争,因为历史上,转毒基因食品被从科学上、技术上判死刑已经有好几次了,但它们都利用窃取的国际国内雄厚的政治、经济、科技和媒体势力,多次起死回生,这一次,我估计它们不仅不会束手就擒,反而会更加疯狂地强推转毒基因在全国各地的大面积种植,进而把中国变成一个转毒基因大屠场,直到把全国人民、中华民族和子孙后代推进断子绝孙、亡国灭种、永世不得翻身的灭顶之灾!
其实,我们没必要跟着转毒基因骗子集团的大忽悠打转,把简单的问题复杂化,被这些罪大恶极、丧尽天良的骗子们牵着鼻子走。一个简单的道理:“民以食为天,食以安为先。”无论你是现代分子生物学还是宇宙现代高科技,你研究出来的食品是让人吃的,安全无害是起码的要求。所以,我们没必要理会转毒基因骗子们的故作高深,只要它们鼓捣的转基因是有巨大毒害的食品,我们就应该为了自己、家人、亲朋好友、全国人民、中华民族和子孙后代加以拒绝并进行坚决斗争,否则,在有国际种族灭绝势力支持的中国转毒基因集团就会肆无忌惮地疯狂大搞特搞转毒基因,到时候,在全国每一样提供可吃的、可用的、可穿的动植物都被转毒基因以后,我们每一个人都会成为受害者、受毒害者、被毒杀者,我们整个民族和子孙后代都会被一网打尽,被斩尽杀绝!任何人在转毒基因这个严重问题上,包括特供阶层,抱侥幸心态都是在助纣为虐和自取灭亡,如果全国民众都采取如此态度,这也必然是中华民族不可救药的最终悲惨宿命!
以下英文内容前一部分(1。)为gmwatch点com的说明和解读,后一部分(2。)为一位专业现代生物学专业人士对这个严重问题independentnews点com说明、解读、分析和判断,其权威性无容置疑。
作为一个文科生,翻译这篇充满转毒基因骗子们视为天书的《现代分子生物学》术语的文章对于我不是一般的难度,但我废寝忘食花了一天两夜总算啃出来了,从我的文字功底来说,应该可以读懂,尽管个别术语可能不完全准确,但大意不会差很远,也欢迎网友们纠错。
1。欧盟监管人员在商业化种植的转基因作物里发现了一个隐藏的病毒基因
乔纳森?莱瑟姆,博士,编辑
独立科学新闻网
1.EU Regulators Discover a Hidden Viral Gene in Commercial GMO Crops
Jonathan Latham, PhD, Editor
Independent Science News
概述:一篇发表在2012年底的科学论文发显示:美国和欧盟的转基因监管机构多年来一直在不谨慎地批准一种含有意外病毒基因的转基因作物。
Synopsis: A scientific paper published in late 2012 shows that US and EU GMO regulators have for many years been inadvertently approving transgenic events containing an unsuspected viral gene.
结果是,在全球商业化种植的54种不同转基因作物里含有源自花椰菜花叶病毒(花叶病毒,CaMV)的多功能VI基因相当大的片段。其中有些是广泛种植的转基因作物,包括抗草甘膦转基因大豆(40-3-2)和MON810玉米。疏忽产生的原因是,监管机构没有意识到VI基因与常用的花叶病毒35S基因调节序列重叠。
As a result, 54 different transgenic events commercialized internationally contain a substantial segment of the multifunctional Gene VI from Cauliflower Mosaic Virus (CaMV) within them. Among these are some of the most widely grown GMOs, including Roundup Ready Soybean (40-3-2) and MON810 Maize. The oversight occurred because regulators failed to appreciate that Gene VI overlaps the commonly used CaMV 35S gene regulatory sequence.
为欧洲食品安全局工作的论文作者们得出的结论是:VI基因的功能会产生潜在的破坏性后果。他们进一步得出的结论说,如果得以表达,VI基因的片段就可以起到足够大的(破坏)作用(见Podevin 和 du Jardin2012年的文章《转基因作物与食品》3:1-5)。
The authors of the paper, working for the European Food Safety Authority, concluded that functions of Gene VI were potential sources of harmful consequences. They further concluded that, if expressed, the fragments of Gene VI are substantial enough for them to be functional (Podevin and du Jardin (2012) GM Crops and Food 3: 1-5).
这一发现对生物技术会衍生出多个方面的问题。最重要的是,人们马上会质疑转基因食品的安全,以及那54种转基因作物是否该取消。但第二,渎职事件牵涉到监管机构和业界圈内双方的无能和自以为是。
This discovery has multiple ramifications for biotechnology. Foremost, there is the immediate question of GMO safety and whether the 54 events should be recalled, but secondly, the failure implicates regulators and the industry in a circle of mutual incompetence and complacency.
这一发现也将强化标注转基因食品的呼声:如果监管机构和业界不能保护公众,那么为什么不允许公众自己保护自己呢?
The discovery will also strengthen the argument for GMO labeling: if regulators and industry cannot protect the public then why should they not be allowed to protect themselves?
—
—
2。监管人员在商业化种植的转基因作物里发现了一个隐藏的病毒基因
乔纳森?莱瑟姆和阿利森?威尔逊
独立科学新闻网,2013年1月21日
2.Regulators Discover a Hidden Viral Gene in Commercial GMO Crops
Jonathan Latham and Allison Wilson
Independent Science News, January 21 2013
http://independentsciencenews.org/commentaries/regulators-discover-a-hidden-viral-gene-in-commercial-gmo-crops/
监管机构该如何宣布这件事呢:在批准20多年后,他们发现了对转基因产品安全很严重的潜在问题?
How should a regulatory agency announce they have discovered something potentially very important about the safety of products they have been approving for over twenty years?
在对转基因作物进行分析以确定潜在过敏原的过程中,欧洲食品安全局(EFSA)为时已晚地发现:在最常见的商业化种植的转基因作物的基因调控序列里也存在一个病毒基因的重要片段(见Podevin和Du Jardin的文章)。这一结果对于生物技术农作物及其监管将衍生出一些严重问题,但消费者和农民的问题可能更加严重,因为有明确的迹象表明,这种叫VI基因的病毒基因对人类不安全,不适合食用。它也可能会扰乱作物的正常功能,包括天然抗病虫害的能力。
In the course of analysis to identify potential allergens in GMO crops, the European Food Safety Authority (EFSA) has belatedly discovered that the most common genetic regulatory sequence in commercial GMOs also encodes a significant fragment of a viral gene (Podevin and du Jardin 2012). This finding has serious ramifications for crop biotechnology and its regulation, but possibly even greater ones for consumers and farmers. This is because there are clear indications that this viral gene (called Gene VI) might not be safe for human consumption. It also may disturb the normal functioning of crops, including their natural pest resistance.
Podevin和du Jardin发现的是,在美国一直商业化种植的86种不同的转基因作物中(都特别插入了外源DNA),有54种含有VI基因成份。他们包括任何一种广泛使用的称为CaMV 35S启动子的基因调节序列(来自花椰菜花叶病毒,花叶病毒,CaMV)。其中一些种植最广泛的转基因作物受到了影响,包括抗草甘膦大豆(40-3-2)和MON810玉米,也包括备受争议的NK603玉米,最近报道它使实验鼠患上了肿瘤(见Seralini等人2012年的文章)。
What Podevin and du Jardin discovered is that of the 86 different transgenic events (unique insertions of foreign DNA) commercialized to-date in the United States 54 contain portions of Gene VI within them. They include any with a widely used gene regulatory sequence called the CaMV 35S promoter (from the cauliflower mosaic virus; CaMV). Among the affected transgenic events are some of the most widely grown GMOs, including Roundup Ready soybeans (40-3-2) and MON810 maize. They include the controversial NK603 maize recently reported as causing tumors in rats (Seralini et al. 2012).
研究人员自己得出的结论是:VI基因的存在“可能会导致意想不到的表型改变”。他们得出这一结论是因为类似的VI基因片段已经被证明可以独自起作用(例如De Tapia等人1993年的文章)。换句话说,欧洲食品安全局的研究人员不可能排除因此给公众健康和环境带来的风险。
The researchers themselves concluded that the presence of segments of Gene VI “might result in unintended phenotypic changes”. They reached this conclusion because similar fragments of Gene VI have already been shown to be active on their own (e.g. De Tapia et al. 1993). In other words, the EFSA researchers were unable to rule out a hazard to public health or the environment.
总之,病毒基因在植物中表达既引起农艺学方面的忧虑,也引起人类健康方面的忧虑(2008年Latham 和 Wilson探讨过)。这是因为许多病毒基因为了促进病原体侵入会关闭宿主的基因;通常情况下,这是通过让特定的抗病原体防御系统失灵来完成的。隐藏这样的基因完全可以导致到农业方面不良的和难以预料的的结果。此外,侵害植物的病毒往往与侵害人类的病毒大同小异。例如,人类和植物病毒的基因有时是可以互换的,而在其他情况下,用转基因方式插入的植物病毒片段会造成被基因改造的植物容易受动物病毒感染(见Dasgupta等人2011年的文章)。因此,从多方面看,掉以轻心地给植物和粮食插入植物病毒会招致极大的潜在危害。
In general, viral genes expressed in plants raise both agronomic and human health concerns (reviewed in Latham and Wilson 2008). This is because many viral genes function to disable their host in order to facilitate pathogen invasion. Often, this is achieved by incapacitating specific anti-pathogen defenses. Incorporating such genes could clearly lead to undesirable and unexpected outcomes in agriculture. Furthermore, viruses that infect plants are often not that different from viruses that infect humans. For example, sometimes the genes of human and plant viruses are interchangeable, while on other occasions inserting plant viral fragments as transgenes has caused the genetically altered plant to become susceptible to an animal virus (Dasgupta et al. 2001). Thus, in various ways, inserting viral genes accidentally into crop plants and the food supply confers a significant potential for harm.
监管人员的选择
The Choices for Regulators
(欧洲食品安全局的)Podevin和Du Jardin最初在商业化种植的转基因作物里发现了VI病毒一定给监管机构展示了截然不同的程序选择。他们可以1)撤销对所有含花叶病毒的VI病毒转基因作物的批准证书(在欧洲,这将意味着撤销进口和禁止种植),2)进行花叶病毒启动子及其VI基因序列的追溯风险评估,希望给它一个清洁的的健康证。
The original discovery by Podevin and du Jardin (at EFSA) of Gene VI in commercial GMO crops must have presented regulators with sharply divergent procedural alternatives. They could 1) recall all CaMV Gene VI-containing crops (in Europe that would mean revoking importation and planting approvals) or, 2) undertake a retrospective risk assessment of the CaMV promoter and its Gene VI sequences and hope to give it a clean bill of health.
可以清楚地看出,第二个选择对欧洲食品安全局很有吸引力。撤销证书将是一个巨大的政治和财政决策,也将使监管者自己尴尬万分。它会让市场上的转基因作物所剩无几,甚至可能意味转基因作物的终结。
It is easy to see the attraction for EFSA of option two. Recall would be a massive political and financial decision and would also be a huge embarrassment to the regulators themselves. It would leave very few GMO crops on the market and might even mean the end of crop biotechnology.
监管者们至少在原则上也有第三种选择,以评估任何转基因作物潜在风险的严重性。欧盟法规所要求的转基因监测应该可以让他们发现农民们或卫生官员们报告的死亡、疾病,或作物歉收是否与VI基因序列有关联。不幸的是,这种特殊调查渠道是科学的死胡同。没有一个国家兑现过对转基因作物的任何危险后果做正规和科学监测的承诺。
Regulators, in principle at least, also have a third option to gauge the seriousness of any potential GMO hazard. GMO monitoring, which is required by EU regulations, ought to allow them to find out if deaths, illnesses, or crop failures have been reported by farmers or health officials and can be correlated with the Gene VI sequence. Unfortunately, this particular avenue of enquiry is a scientific dead end. Not one country has carried through on promises to officially and scientifically monitor any hazardous consequences of GMOs (1).
毫无疑问,欧洲食品安全局采用了第二种选择。然而,他们的调查只得出了模糊和令人不安的结论:VI基因“可能会导致非预期的表型变化”(见Podevin和Du Jardin2012年文章)。从字面上看,这意味着一个未知的数量、性质或严重性的变化可能会(也可能不会)发生。这远未达到公共安全要求的坚实的科学确定性,这可以用来解释为什么欧洲食品安全局没有下令撤销证书。
Unsurprisingly, EFSA chose option two. However, their investigation resulted only in the vague and unreassuring conclusion that Gene VI “might result in unintended phenotypic changes” (Podevin and du Jardin 2012). This means literally, that changes of an unknown number, nature, or magnitude may (or may not) occur. It falls well short of the solid scientific reassurance of public safety needed to explain why EFSA has not ordered a recall.
病毒DNA片段的存在真的那么举足轻重吗?下面是对VI基因及其已知特性和安全影响的独立分析。这个分析清楚地说明了监管机构的两难困境。
Can the presence of a fragment of virus DNA really be that significant? Below is an independent analysis of Gene VI and its known properties and their safety implications. This analysis clearly illustrates the regulators’ dilemma.
VI基因的多种功能
The Many Functions of Gene VI
和大多数植物病毒基因一样,VI基因产生一种起多种作用的蛋白质。(到目前为止)已知它在病毒感染周期中有四个作用。第一是参与病毒颗粒的组合。目前没有数据表明此功能对生物安全有任何影响。第二个已知的功能是通过抑制称为RNA沉默的普通细胞系统来压制抗病原体防御功能(见Haas等人2008年的文章)。第三,VI基因具有极不寻常的反式激活(见下述) 花叶病毒产生的长RNA(35S RNA)(见Park等人2001年的文章)。第四,由于与那些其他的机制无关,最近有研究表明VI基因使植物对一种细菌病原体高度敏感(见Love等人2012年的文章)。VI基因是通过干扰植物所拥有的一个共同抗病原体防御机制来达到侵害目的。VI基因的后三个功能(及其风险影响)在下面进一步解释:
Gene VI, like most plant viral genes, produces a protein that is multifunctional. It has four (so far) known roles in the viral infection cycle. The first is to participate in the assembly of virus particles. There is no current data to suggest this function has any implications for biosafety. The second known function is to suppress anti-pathogen defenses by inhibiting a general cellular system called RNA silencing (Haas et al. 2008). Thirdly, Gene VI has the highly unusual function of transactivating (described below) the long RNA (the 35S RNA) produced by CaMV (Park et al. 2001). Fourthly, unconnected to these other mechanisms, Gene VI has very recently been shown to make plants highly susceptible to a bacterial pathogen (Love et al. 2012). Gene VI does this by interfering with a common anti-pathogen defense mechanism possessed by plants. These latter three functions of Gene VI (and their risk implications) are explained further below:
1)VI基因是RNA沉默的抑制基因
1) Gene VI Is an Inhibitor of RNA Silencing
RNA沉默是一种在RNA丰度水平控制基因表达的机制(见Bartel 2004年的文章)。这也是植物和动物的一个重要抗病毒防御机制,因此,大多数病毒进化出了使其丧失防御功能的基因(例如 VI基因)(请见 Dunoyer和Voinnet2006年的文章)。
RNA silencing is a mechanism for the control of gene expression at the level of RNA abundance (Bartel 2004). It is also an important antiviral defense mechanism in both plants and animals, and therefore most viruses have evolved genes (like Gene VI) that disable it (Dunoyer and Voinnet 2006).
VI基因的这个属性产生了两个明显的生物安全问题:1)VI基因会导致转基因作物的异常基因表达,造成未知的后果,2)VI基因会干扰植物自我保护免受病毒病原体侵害的能力。总之,众多的实验表明:破坏基因沉默的病毒蛋白质基因增加了广泛的病毒感染机会(见Latham和Wilson2008年的文章)。
This attribute of Gene VI raises two obvious biosafety concerns: 1) Gene VI will lead to aberrant gene expression in GMO crop plants, with unknown consequences and, 2) Gene VI will interfere with the ability of plants to defend themselves against viral pathogens. There are numerous experiments showing that, in general, viral proteins that disable gene silencing enhance infection by a wide spectrum of viruses (Latham and Wilson 2008).
2)VI基因是一个独特的反式激活基因表达
2) Gene VI Is a Unique Transactivator of Gene Expression
多细胞有机体通过一种机制制造蛋白质,其中每个核糖体通过一个信使核糖核酸(mRNA)时只产生一个蛋白质。一旦该蛋白质的产生完成,核糖体就会脱离mRNA。然而,在感染花叶病毒的植物细胞中,或者作为一个转基因,VI基因会对这个过程进行干预,指示核糖体回到mRNA(重新开始),并在mRNA上产生下一个蛋白质,即使已经有了一个。VI基因的这种属性使花椰菜花叶病毒能够从一个单体长RNA(35S RNA)产生多个蛋白质。重要的是,VI基因的这种功能(被称为反式激活)并不局限于35S RNA。VI基因似乎能反式激活任何细胞里的mRNA(见Futterer和Hohn1991年、Ryabova等人2002年的文章)。于是就有这种可能:跟随着一个主蛋白编码序列而产生出成千上万个具有蛋白编码序列的短或长mRNA分子。这些次级编码序列可以在VI基因被表达的细胞里得到表达。结果大概会是在细胞内产生了众多的随机蛋白质。这对生物安全的影响难以估量。这些蛋白质可能是过敏源,植物或人体毒素,或者也可能无害。此外,对于已插入VI基因的商业化种植的作物品种的答案也各有不同。
Multicellular organisms make proteins by a mechanism in which only one protein is produced by each passage of a ribosome along a messenger RNA (mRNA). Once that protein is completed the ribosome dissociates from the mRNA. However, in a CaMV-infected plant cell, or as a transgene, Gene VI intervenes in this process and directs the ribosome to get back on an mRNA (reinitiate) and produce the next protein in line on the mRNA, if there is one. This property of Gene VI enables Cauliflower Mosaic Virus to produce multiple proteins from a single long RNA (the 35S RNA). Importantly, this function of Gene VI (which is called transactivation) is not limited to the 35S RNA. Gene VI seems able to transactivate any cellular mRNA (Futterer and Hohn 1991; Ryabova et al. 2002). There are likely to be thousands of mRNA molecules having a short or long protein coding sequence following the primary one. These secondary coding sequences could be expressed in cells where Gene VI is expressed. The result will presumably be production of numerous random proteins within cells. The biosafety implications of this are difficult to assess. These proteins could be allergens, plant or human toxins, or they could be harmless. Moreover, the answer will differ for each commercial crop species into which Gene VI has been inserted.